Skip to main content

Aniline

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl groupattached to an amino group, aniline is the prototypical aromatic amine. Its main use is in the manufacture of precursors to polyurethane and other industrial chemicals. Like most volatile amines, it possesses the odour of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds.
Aniline is a planar molecule. The amine is nearly planar owing to conjugation of the lone pair with the aryl substituent. The C-N distance is correspondingly shorter. In aniline, the C-N and C-C distances are close to 1.39 Å, indicating the π-bonding between N and C.
Industrial aniline production involves two steps. First, benzene is nitrated with a concentrated mixture of nitric acid and sulfuric acid at 50 to 60 °C to yield nitrobenzene. The nitrobenzene is then hydrogenated (typically at 200–300 °C) in the presence of metal catalysts.
The reduction of nitrobenzene to aniline was first performed by Nikolay Zinin in 1842 using inorganic sulfide as a reductant (Zinin reaction).
Aniline can alternatively be prepared from ammonia and phenol derived from the cumene process. In commerce, three brands of aniline are distinguished: aniline oil for blue, which is pure aniline; aniline oil for red, a mixture of equimolecular quantities of aniline and ortho- and para-toluidines; and aniline oil for safranine, which contains aniline and ortho-toluidine, and is obtained from the distillate (échappés) of the fuchsine fusion.
Many analogues of aniline are known where the phenyl group is further substituted. These include toluidines, xylidines, chloroanilines, aminobenzoic acids, nitroanilines, and many others. They often are prepared by nitration of the substituted aromatic compounds followed by reduction. For example, this approach is used to convert toluene into toluidines and chlorobenzene into 4-chloroaniline.
The chemistry of aniline is rich because the compound has been cheaply available for many years. Below are some classes of its reactions.

The oxidation of aniline has been heavily investigated, and can result in reactions localized at nitrogen or more commonly results in the formation of new C-N bonds. In alkaline solution, azobenzene results, whereas arsenic acid produces the violet-coloring matter violaniline. Chromic acid converts it into quinone, whereas chlorates, in the presence of certain metallic salts (especially of vanadium), give aniline black. Hydrochloric acid and potassium chlorate give chloranil. Potassium permanganate in neutral solution oxidizes it to nitrobenzene, in alkaline solution to azobenzene, ammonia and oxalic acid, in acid solution to aniline black. Hypochlorous acid gives 4-aminophenol and para-amino diphenylamine.Oxidation with persulfate affords a variety of polyanilines compounds. These polymers exhibit rich redox and acid-base properties.
Like phenols, aniline derivatives are highly susceptible to electrophilic substitution reactions. Its high reactivity reflects that it is an enamine, which enhances the electron-donating ability of the ring. For example, reaction of aniline with sulfuric acid at 180 °C produces sulfanilic acid, H2NC6H4SO3H.

If bromine water is added to aniline, the bromine water is decolourised and a white precipitate of 2,4,6-tribromophenylamine is formed. The largest scale industrial reaction of aniline involves its alkylation with formaldehyde.
Aniline is a weak base. Aromatic amines such as aniline are, in general, much weaker bases than aliphatic amines. Aniline reacts with strong acids to form anilinium (or phenylammonium) ion (C6H5-NH3+).
Traditionally, the weak basicity of aniline is attributed to a combination of inductive effect from the more electronegative sp2 carbon and resonance effects, as the lone pair on the nitrogen is partially delocalized into the pi system of the benzene ring. Missing in such analysis is consideration of solvation. Aniline is, for example, more basic than ammonia in the gas phase, but ten thousand times less so in aqueous solution.
Aniline reacts with acyl chlorides such as acetyl chloride to give amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide. At high temperatures aniline and carboxylic acids react to give the anelide.
Boiled with carbon disulfide, it gives sulfocarbanilide (diphenylthiourea) (CS(NHC6H5)2), which may be decomposed into phenyl isothiocyanate (C6H5CNS), and triphenyl guanidine (C6H5N=C(NHC6H5)2)
Aniline and its ring-substituted derivatives react with nitrous acid to form diazonium salts. Through these intermediates, aniline can be conveniently converted to -OH, -CN, or a halide via Sandmeyer reactions. This diazonium salt can also be reacted with NaNO2 and phenol which produces a dye which is benzeneazophenol, this process is called coupling.
The largest application of aniline is for the preparation of methylene dianiline and related compounds by condensation with formaldehyde (as discussed above). The diamines are condensed with phosgene to give methylene diphenyl diisocyanate, a precursor to urethane polymers. Other uses include rubber processing chemicals (9%), herbicides (2%), and dyes and pigments (2%). As additives to rubber, aniline derivatives such as phenylenediamines and diphenylamine, are antioxidants. Illustrative of the drugs prepared from aniline is paracetamol (acetaminophen, Tylenol). The principal use of aniline in the dye industry is as a precursor to indigo, the blue of blue jeans.







Comments

Popular posts from this blog

Phenol-Formaldehyde Resin

Phenol formaldehyde resins (PF) or phenolic resins are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials. There are two main production methods. One reacts phenol and formaldehyde directly to produce a thermosetting network polymer, while the other restricts the formaldehyde to produce a prepolymer known as novolac which can be moulded and then cured with the addition of more formaldehyde and heat. There are many variations in both production and input materials that are used to produce a wide variety...

Urea-Formaldehyde Resin

Urea-formaldehyde , also known as   urea-methanal, so named for its common synthesis pathway and overall structure,is a   non-transparent   thermosetting   resin   or   polymer. It is produced from   urea   and   formaldehyde. These resins are used in   adhesives, finishes,   particle board,   MDF, and molded objects. It was first synthesized in 1884 by Hölzer, who was working with Bernhard Tollens. In 1919, Hanns John (1891–1942) of Prague, Czechoslovakia obtained the first patent for urea-formaldehyde resin. UF and related amino resins are a class of   thermosetting resins   of which urea-formaldehyde resins make up 80% produced globally. Examples of amino resins use include in automobile tires to improve the bonding of rubber to tire cord, in paper for improving tear strength, in molding electrical devices, jar caps, etc Urea-formaldehyde resin's attributes include high tensile strength, flexural ...

Antibiotics

The term antibiotics is a broad one , defined by Waksman as, "a substance produced by microorganisms , which has the capacity of inhibiting the growth and even of destroying other microorganisms by the action of very small amounts of the antibiotics " . Approximately 3000 substances come under the classification , but only 70 have the necessary combination of patient safety , antimicrobial action and stability. Penicillin, erythromycin, tetracycline, cephalosporins are among the most widely used. Penicillin : A number of penicillin, differing only in the composition of the R ( alkyl ) group, have been isolated from natural media and hundreds have been semi-synthesized . Penicillin G USP, with benzyl for R group, generally the most desirable , is the type commercially available , usually combined in salt form with procaine or potassium.  It is possible to assist the synthesis of a desired penicillin by supplying the appropriate precursor to the culture i.e., the acid of ...